滴滴司机一个月能赚多少钱 小编:艳芬 3924阅读 2020.11.16 1、滴滴公司有个奖励叫冲单奖励,这个是增加收入的一个主要渠道。一天能做到20单以上就有额外奖励,很多司机就是冲着这个奖励在做。但是根据很多司机的反应,这个奖励要得到很难。
2、再说说钱吧,滴滴公司按比例抽20%,另外抽一个劳务费百分之1.77,加一个每单0.5元,再加一些高峰奖励。算下来一般司机只能得到350元左右。车跑出来的公里数是220公里,油钱就按0.5毛每公里算,实际能拿到的也就是230元左右,算下来一小时的工时费也就是20多元,这还不算车的损耗,相比较而言,真的还不如一个在工地上打小工了。也就是说不算车损的情况下,每天跑14个小时以上,赚个6000元已经是顶天了。
3、滴滴的奖励在北京一些城市改了,换成高峰时段奖。例如,高峰时段钻石就是2倍奖励。前提是你前一天所做单数必须是25单以上,也就是你前一天必须做15个小时以上。高峰时段顶多也就是跑一单,因为那个时段是最塞车的时段。想跑也跑不动啊。还有万一有违章罚款那就只能自认倒霉了。那些宣传说月入过万的广告不要相信,能做到纯收入过万的司机少之又少,太拼了身体会承受不住,不值得。
总结:最终进入司机口袋的四五千左右。不能指望发财,只能说算个饭碗。
全职跑滴滴一天挣多少
每天跑15个小时左右的话,一天约400元,那么一个月下来能够挣一万三千元左右。
每天能够保持在15个小时左右,虽然收入每个月能有一万四千多元,但是如果抛去其他的费用的话,收入根本就没有那么多。首先就要说一下油钱,每个月的燃油费起码要4000块钱左右吧,毕竟或者是租的人家公司的,每个月除了油钱还要交租金。
另外作为开车的人来说,违章是难免的,哪怕是开了很多年车的老司机都没有办法避免。违章的费用和保养车子的费用,每个月的开销就能达到8000多块钱,如果这样算下来的话,自己到手也就4000多块钱。
滴滴司机怎么查看收入
很简单,你在滴滴快车专车司机端上就能查到你一天的所有收入,部分奖励会有可能延迟到账的。
虽然还没收获满意的offer,不过后面也没什么面试了,所以来回馈下(最近发帖比较多,我怕后面懒下来就不发了,所以趁现在赶紧发出来),放一些秋招面试的面试题,主要是nlp方向。有些公司当初忘了记了(阿里、考拉和依图)记了或者觉得没什么可记的(比如华为和vivo),记下来的如下:
网易互娱 - ailab - 人工智能研究工程师
一面50分钟
自我介绍
介绍腾讯实习内容
Attention机制的原理
介绍艾耕实习内容
Fasttext原理,相比于word2vec有什么优势
文本分类除了CNN和RNN还知道哪些方法?
BILSTM + CRF模型的原理
多任务学习和对抗网络了解不
给定两个命名实体识别任务,一个任务数据量足够,另外一个数据量很少,可以怎么做
隐马尔可夫模型了解吗,和CRF的区别
word2vec是有监督的还是无监督的?
思考题:有A(红)B(蓝)两瓶墨水,从A中取一勺倒到B中,混匀后,再从B中取等量墨水,倒到A中。问,是A中蓝墨水多还是B中红墨水多?
二面55分钟
自我介绍
摘要抽取怎么做的
命名实体的应用场景,泛化能力怎么样
CRF模型说一下,优化目标是什么,怎么训练的?
CRF和HMM的区别
HMM做了哪些独立性假设
HMM的训练方法
CRF的预测方法,维特比算法的过程
画Transformer的结构图,讲一下原理,为什么self-attention可以替代seq2seq
机器翻译的Attention机制,里面的q,k,v分别代表什么
Fasttext原理,cbow和skipgram的区别,分层softmax和負采样,負采样的采样原理,为什么要这样采样,Fasttext哈希规则,怎么把语义相近的词哈希到一个桶里。
讲一下腾讯的实习
模型怎么实现的,有没有优化矩阵的运算
为什么要用Fasttext做文本分类,是因为训练快还是预测快
推导lr
智力题:蓄水池采样
网易云音乐 - nlp算法工程师
一面50分钟
自我介绍
讲一下随机森林,GBDT,XGBoost
XGBoost相比于GBDT有哪些改进
Adaboost和XGBoost的区别
Adaboost和XGBoost是怎么进行预测的
讲一下Textcnn的运算过程
文本分类的评价指标
讲一下AUC
过拟合的解决方法
稳定和非稳定的排序算法有哪些
二分查找递归和非递归的时间和空间复杂度
手写冒泡排序,写完问这个程序要上线还需要考虑哪些东西
二面30分钟
劝退
拼多多 - 算法工程师
一面75分钟
全程讲实习
LDA的词表示和word2vec的词表示有什么区别;
Fasttext 原理,为什么用skipgram不用cbow,負采样怎么做到,公式是什么?
画Transform结构图
代码题:给定字符串 s ,求与 s 编辑距离为2的字符串集合。
二面45分钟
全程讲实习
代码题:一个圆被分成M个扇形,一共有N种颜色,相邻扇形不同色,一共有几种涂法?
三面hr
还在面哪些公司
有offer了吗
最理想的公司是哪?
选择offer最看重哪些因素
我们公司加班很多,你怎么看
女朋友去哪?(并没问是否单身就直接问了这个问题)
期望薪资多少?
追一科技 - 自然语言处理工程师
一面50分钟
讲实习
为什么Attention的结果和TextCNN的结果相差不大(不太明白什么意思,就讲了下两者对信息提取范围大小的区别)
Fasttext和word2vec的区别
Fasttext怎么做分类的
词向量用什么训练的,维度多大
XGBoost和随机森林的区别
XGBoost相对于GBDT的区别
XGBoost工程方面的改进有哪些?
XGBoost和随机森林的特征重要性是怎么计算的?
输入补全可以用哪个数据结构来做?(字典树)
假如有10亿条搜索请求,怎么找出最热的前10条?
问问题得到的信息:上海那边的部门主要是做金融保险业的定制化的智能客服,偏工程方向。主要工作内容有客服系统开发、知识图谱搭建、三元组抽取等,基本上会用到所有的NLP知识。。。
补充:梯度消失和梯度爆炸的原因,为什么rnn比cnn和全连接层神经网络更容易发生梯度消失或爆炸
补充:怎么判断过拟合,怎么防止过拟合,说一下dropout
二面30分钟
聊实习
百度 - 算法工程师
一面60分钟
讲项目
如果再给一次机会,你觉得这个项目还有什么可以改进的点?
代码题:二分查找
代码题:旋转数组的二分查找
代码题:给定长度为n的数组,求所有可能长度为m的排列组合的情况
二面60分钟
讲项目
讲fasttext,词向量,文本分类原理
文本分类CNN,LSTM和Attention的区别
代码题:有n枚硬币,每次从左边或右边拿一枚,一共拿m次,求能拿到的最高价值
三面60分钟
经理面
讲项目
讲比赛,现在来看有什么可以改进的点
智力题:圆盘涂色问题
一些hr题
英语流利说
一面20分钟
实验室方向
详细讲一下Transformer模型;transformer中句子的encoder表示是什么;怎么加入词序信息的。
讲一下BLEU;
怎么用数据处理的trick提升了NER的表现
摘要抽取可读性问题怎么回事?
二面60分钟
手撕代码:二叉搜索树转有序双向链表,要求不能创建新的节点
做过的nlp任务中,哪个任务最难?你觉得有哪些可以改进的点,怎么改进?
摘要生成怎么做的?
讲一下SVM
概率图模型,有向图模型和无向图模型分别作了哪些假设?CRF的训练目标是什么?
BILSTM+CRF的训练目标?状态转移矩阵是joint learn的吗?维度是多少?
维特比算法的时间复杂度
LSTM相比于传统RNN解决了什么问题?怎么解决的?
Attention模型和CNN 的区别?
欢聚时代
一面40分钟
讲一下tag提取怎么做的,讲一下LDA,讲一下隐狄利克雷分布,里面有个辛普森采样了解吗
讲事件分类。数据有多少,样本不平衡怎么解决的,CNN用在文本里和用在图像里有什么区别,用在文本里时卷积核的宽度代表什么,你怎么选的,为什么要这么选?CNN和LSTM都可以用于分类,两者用于分类有什么区别?说一下Attention,Attention有哪些变种,为什么Attention模型的F指标还比不上作为baseline的textCNN?最后为什么选择Attention模型?词向量用什么训练的,数据量有多少,怎么评价词向量的质量的?词向量的维度是多少,为什么要选这个维度?文本分类中的多义词问题可以怎么解决?
讲讲CRF。CRF和HMM的区别,从有向无向图的角度呢?从其他角度呢?。CRF和深度学习的结合还知道哪些?
讲讲python的垃圾回收机制,讲讲装饰器